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Abstract—We introduce two pioneering applications leveraging
Distributed Fiber Optic Sensing (DFOS) and Machine Learning
(ML) technologies. These innovations offer substantial benefits
for fortifying telecom infrastructures and public safety. By
harnessing existing telecom cables, our solutions excel in perime-
ter intrusion detection via buried cables and impulsive event
classification through aerial cables. To achieve comprehensive
intrusion detection, we introduce a label encoding strategy for
multitask learning and systematically evaluate the generalization
performance of the proposed approach across various domain
shifts. For accurate recognition of impulsive acoustic events, we
compare several standard choices of representations for raw
waveform data and neural network architectures, including con-
volutional neural networks (ConvNets) and vision transformers
(ViT). We also study the effectiveness of the built-in inductive
biases under both high- and low-fidelity sensing conditions and
varying amounts of labeled training data. All computations
are executed locally through edge computing, ensuring real-
time detection capabilities. Furthermore, our proposed system
seamlessly integrates with cameras for video analytics, signifi-
cantly enhancing overall situation awareness of the surrounding
environment.

Index Terms—Acoustic event classification, deep learning,
distributed optical fiber sensing, gunshot detection, intrusion
detection, machine learning, network field experiment.

I. INTRODUCTION

Distributed fiber optic sensing (DFOS) technology, which
utilizes the fundamental sensing capabilities of optical fiber
with wide area coverage, has been applied in diverse ap-
plications. These include earthquake detection [1], pipeline
monitoring and leakage detection [2], [3], structure change
monitoring [4], road traffic monitoring [5], and railway intru-
sion detection [6].

Recently, there has been growing interest in applying DFOS
technology into the telecommunications sector, given the vast
fiber infrastructures that telecom carriers have built over the
past 30 years accommodate the growth of internet traffic
and the interconnection of 5G and beyond networks among
cities, towns, homes, and data centers. While transmission
fibers were initially intended solely for data transmission, they
are now being explored as potential sensing media [7]–[10].
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Meanwhile, there is also an increasing interest in applying
machine learning (ML) and AI algorithms to extract actionable
information from fiber sensing data and support autonomous
decisions in real-time [11]–[17].

Operational telecom fiber networks offer significant po-
tential for optical sensing applications. DFOS technology
turns existing communication cables into individual sensing
elements located every meter, with all the measurements
synchronized [18]. Consequently, this sensing technology can
be employed to identify threats both to the fiber infrastructure
and the surrounding environment, contributing to community
safety [19]. In this paper, we present field results utilizing
DFOS and ML/AI technologies for (1) perimeter intrusion
detection over buried cables to safeguard the infrastructure,
and (2) impulsive acoustic event detection over aerial cables
to identify gunshot events and other threatening situations in
the surrounding environment.

DFOS boasts a multitude of advantages, including long
distance, immunity to electromagnetic interference, and robust
in harsh environment [20]. Additionally, its unique feature
of integrating sensing and data transmission within the same
fiber negates the need for electrical for electrical power in the
field. When synergized with ML, DFOS system involves into
a covert, instantaneous, and simultaneous classifier of multiple
physical intrusions or disturbances. This amalgamation facil-
itates robust perimeter intrusion detection, offering enhanced
security measures for safeguarding national borders, airports,
seaports, data centers, power plants, and other critical assets.

When physical intrusions induce vibrations transmitted
through subterranean optical fibers along land borders, prop-
erty boundaries, or facility perimeters, the disturbances trig-
ger discernible changes in light. This paper introduces ma-
chine learning-based methodologies can simultaneously clas-
sify physical intrusions types and other auxiliary labels and
provide valuable information to law enforcement agencies.
This includes details such as proximity to the cable and the
direction of the intruder’s movement. Additionally, we also
study the generalization performance with different fractions
of training data, across different field conditions (e.g., heavy
rain to snow), and information sharing across multiple related
tasks through a shared encoder with multiple task heads [21].

Detection system identifying impulsive acoustic events,
such as gunshots, within public areas (e.g., cities, schools,
hotels, etc.) play a pivotal role in fortifying public safety
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Fig. 1. Schematic of backscattering signals that are exploited in reflectometry-
based DFOS.

and swiftly alerting law enforcement to gun-related inci-
dents. Conventional methods relying on electrical microphones
necessitate dense installations due to the limited coverage,
incurring substantial maintenance costs, encountering power
and data transmission issues. Notably, these solutions raise
privacy concerns and are susceptible to false alarms triggered
by similar impulsive sounds like firecrackers or door slams.

In this paper, which is an extension to [22], we demon-
strate that distributed acoustic sensing (DAS) technology can
capture rich acoustic characteristics in recorded data, and
deep learning-based approaches are capable of classifying
multiple types of impulsive acoustic events with high accuracy.
Meanwhile, we also empirically study the sufficiency of some
dimension-reduced representations of the DAS waveform data
that protects privacy while preserving the utility of data for
specific downstream machine learning tasks only.

The rest of paper is organized as follows: Section II outlines
the principles behind the employed DFOS sensing technology
and the field setup. Section III and IV introduces the two
aforementioned use cases, providing detailed experimental
design and validation. In Section V, we present system im-
plementation, focusing on edge processing and multi-modal
integration with video analytics. Section VI concludes the
paper. Additional details about data processing and the neural
network architectures used in this paper can be found in
Appendices A and B.

II. FIELD EXPERIMENTAL SETUP

Figure 1 illustrates a visual aid highlighting the fundamental
aspect of DFOS: showcasing in the measurement of nonlinear
backscattering signals — Rayleigh, Brillion and Raman phe-
nomena [20], [23]. Our study employed a DAS system, utiliz-
ing Rayleigh optical time-domain reflectometer (OTDR) de-
tection [18]. This methodology gauges alterations in Rayleigh
scattering intensity via interferometric phase beating. With
coherent detection, the DAS system retrieves comprehensive
polarization and phase information from the backscattering
signals. Our setup involved a 1550-nm laser, operating at
a sampling rate of 125 MHz, utilizing brief optical pulses,
and on-chip fast processing. These configurations enabled
achieving an impressive sensor resolution, as fine as 1 meter.

Figure 2 presents the setup employed during the field
trials, showcasing the configuration comprising a DAS sys-
tem situated at the central office (CO), a 38-km field fiber,
and extension fiber deployed beyond the CO perimeter to
fortify facility security. The extension fiber consists of three

Fig. 2. Experimental Setup with three sections of cable: buried, attached to
the fence, and hanging on poles with coils.

segments: buried underground, affixed to the perimeter fence,
and suspended on poles with coils. The CO serves as a
the core sensing infrastructure, utilizing existing fiber for
comprehensive environmental monitoring, such as road traffic
monitoring. This central hub then extends connectivity to the
extension fibers, facilitating the integration of new sensing
branches. These extensions enable diverse applications, such
as intrusion detection through buried cables and impulsive
acoustic event monitoring via aerial cables. Incorporating fiber
coils and fiber-based signal enhancers (FSEs) into the test bed,
the system architecture remains straightforward and seamless.
Localization and data derived from events is amalgamated with
video analytics, offering spatial and temporal insights to track
individuals associated with the detected events.

The proposed solution holds the potential to facilitate un-
interrupted monitoring of intrusion attempts, gunshots, and
various public safety threats across areas in regions with
telecommunication fibers. The technique and discoveries out-
lined in this report offer a substantial stride forward in
developing a vibration surveillance and acoustic monitoring
system leveraging DFOS technology. This contribution signi-
fies a noteworthy advancement in enhancing security measures
through innovative monitoring techniques.

III. INTRUSION DETECTION

While there exists broad categories of intrusion events,
such as fence shaking, our specific focus lies on human-
movement intrusion scenarios, particularly involving an indi-
vidual’s proximity to a cable and the moving direction. Our
solution combines ML techniques with the DAS system. In
this setup, fiber optic cables detect vibrations that can signal
different types of intrusions. ML algorithms then use pattern
recognition to identify unusual behavior patterns, helping to
spot potential security threats.

Intrusion events exhibit inherent diversity, characterized by
varying elements such as the movement direction, speed, and
proximity to the cable. Given this complexity, our focus rests
on developing a model adept at concurrently recognizing these
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distinct facets. To tackle this challenge, we’ve devised and
compared two distinct approaches, thoroughly evaluated across
multiple tasks through experimentation.

Additionally, we conduct experiments to assess the method’s
performance, examining its ability to sustain accuracy un-
der varying weather conditions and with different types of
movements. This comprehensive evaluation spans changes in
environmental dynamics, encompassing scenarios like rain and
snow, alongside different physical movements like running,
walking, or other activities influencing the detection process.

A. Data Collection

Our study involved a structured data collection process, as
depicted in Fig. 3. We focused on a segment of cable spanning
six locations, each separated by an interval of 5 meters. Each
sample collected is a composite of various factors, including
weather conditions, moving directions, and activity types.
Specifically, the data encompasses: (1) Weather Conditions:
collections were made on days following rain (83 samples)
and snow (88 samples). (2) Activity Directions and Types:
movements were captured in four directions relative to the
cable’s orientation:

• Moving parallel to the cable, (127 instances), where 64
to right and 43 to left instances, 64 moving near cable
(0m-7m) and 63 moving far from cable (8m-15m).

• Moving vertically to the cable, either towards or away
from it (44 instances in total and 22 each).

Illustrations of typical movement patterns include an orange
figure demonstrating vertical walking away from the cable
starting at Location 3, and a green figure depicting running
from left to right parallel to the cable are shown in Fig. 3.

Fig. 3. Data collection setting for intrusion detection

Our dataset construction involved extracting 44×24 patches
from each image. With the spatial resolution 1.6m and tem-
poral sampling rate 2 KHZ, each patch covers 38m and
22ms. These patches were labeled based on their overlap with
predefined ground-truth bounding boxes (referenced as white
boxes in Fig. 4). We randomly splitting these patches into
training and testing sets. Detailed statistics of the dataset are
presented in Appendix A, Table VII and Table VIII.

B. Experiment Design

a) Generalization: Data collection in the field often
encounters constraints due to high cost or practical limitations,
making it challenging to encompass all conceivable combina-
tions of field conditions. In most cases, training data collection
is confined to a few accessible scenarios, sometimes lacking

Fig. 4. Waterfall images of different weather conditions and moving activities

data from the target domain during the training phase entirely.
Moreover, test environments are often different from the
model’s training domain. The characteristics of sensing data
exhibit variations across diverse weather-ground conditions,
signal source types, and time-varying backgrounds [15], [24],
[25]. In this work, we study two types of generalization: (1)
Weather conditions: snow & rain. Data collected post-rainy or
snowy day feature distinct ground conditions — wet ground
or snow covered — affecting the signal sensed by the cable.
As illustrated in Fig. 4, the data intensity shown in color bars
collected post-snowy days notably surpasses that after rainy
days; (2) Activity types: run & walk demonstrates that walking
patterns typically exhibit longer duration (18s) compared to
running ones (around 10s) for the same distance, as shown
in Fig. 4. These exemplary figures aim to succinctly convey
the challenges encountered in data collection scenarios while
setting the stage for the specific types of generalization studied
in the work.

In our approach to address this generalization task, we
employed a neural network model designed for binary clas-
sification, using patches in sensing waterfall images as the
input data. The principal aim of this model revolves around
identifying the presence or absence of detectable movement
activity within these specified patches.

b) Multitask and fine-grained label: It is interesting and
useful to investigate the detailed categories of the intrusion
events. For example, from the direction of the event, we may
be able to determine if the person is trying to trespass or
simply passing by. Also, we can determine if an event is a
threat from the vertical distance to the cable. To explore the
details of an event, we designed four classification tasks. For
events parallel to the cable, there are two tasks: Task1 to left
vs. to right to distinguish the event direction, Task2 near vs.
far to distinguish the event distance to the cable. For events
vertical to the cable, there is Task3 go further vs. go closer
to distinguish the vertical direction. We also consider Task4
walk vs. run in this experiment.

To simultaneously learn all the classification tasks, there are
two formulations:

• Distributed Label Encoding. The label can be represented
as 4-digit integer as shown in Fig. 5 (a), which shows four
label examples for encoding above mentioned four tasks.
Each digit is either 0 or 1 (light or dark green) represent-
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Fig. 5. Label encoding schemes: (a) distributed and (b) one-hot encoding

ing the label for one task. We adopt a ConvNet model
with a shared backbone for common feature extraction,
and 4 heads for outputs where each head corresponds to
one binary classification task. This formulation involves
training a model on multiple learning tasks simultane-
ously. We aim to determine whether the model’s learning
improves when labels are mapped into four semantically
meaningful subspaces.

• One-hot Label Encoding. This one-hot encoding, on the
other hand, is a case of single-label classification that
associates the input samples to a unique target label
from a set of disjoint labels. In other words, the labels
corresponding to the input samples form a disjoint set.
For 4 binary classification tasks, there are 16 possible
combinations while 4 are not present in our dataset,
resulting only 12 combinations. We use one-hot label
coding, where N=12, as shown in Fig. 5 (b). We adopt the
same backbone with head architecture as before, except
that the head has 12 outputs. In this setting, the model
won’t have the concept of tasks, all that is asked is to
distinguish 12 exclusive classes instead of 2 outputs per
task in previous setting.

C. Experimental results

Table I shows the results of the four generalization tasks,
where Train Acc denotes the accuracy in source domain and
Test Acc is for target domain. We run ten times per setting and
report the average and standard deviation of the accuracies. It
can be seen that the model can generalize to unseen weather
condition and activity type. It is also interesting to see that the
performance differs when source and target domain exchanges.
For example, the model of Snow2rain is more accurate than
Rain2snow on target domain. One possible reason is that
features learned under post-snowy condition may be more
robust and transferable to other conditions. In contrast, features
learned in post-rainy condition may be more specific to rain-
related challenges and may not generalize as well. Moreover,
the variability within the training data can also play a role.
Further experiments are needed to analyze the reason and we
leave them as future work.

TABLE I
GENERALIZATION EXPERIMENT RESULTS

Task Snow2rain Rain2snow Walk2run Run2walk
Train Acc (%) 99.43±0.29 99.84±0.07 99.17±0.58 98.12±1.12
Test Acc (%) 99.06±0.14 96.66±0.55 98.40±0.33 95.90±0.88

Table II compares the performances of Distributed Label
Encoding (DLE) and One-hot Label Encoding (OLE), where

Task Acc is the accuracy of each task. We also list the
accuracies in different ratios of training set size over all
samples. The results demonstrate that the DLE consistently
outperforms the OLE by a significant margin across all tasks
and training set ratios. Furthermore, the OLE model exhibits
a greater sensitivity to variations in the training set size,
particularly in Task 2. In this case, the accuracy of the OLE
model drops by 18% when the training set size ratio decreases
from 75% to 20%, whereas the DLE experiences only 6%
decrease in accuracy.

TABLE II
COMPARISON OF DISTRIBUTED LABEL ENCODING (DLE) AND ONE-HOT

LABEL ENCODING (OLE).

Ratio Model 75% 50% 30% 20%
Task1
Acc (%)

OLE 84.91±4.77 83.43±2.56 77.80±2.61 76.16±3.13
DLE 94.72±1.40 93.27±0.67 90.43±1.43 90.85±0.67

Task2
Acc (%)

OLE 58.57±5.31 55.45±6.01 47.21±4.29 39.55±4.63
DLE 87.68±3.31 86.36±3.12 84.87±1.62 81.25±2.60

Task3
Acc (%)

OLE 73.71±3.06 74.62±2.41 72.02±2.75 69.90±2.27
DLE 83.90±1.68 83.49±1.74 83.80±0.94 80.12±2.50

Task4
Acc (%)

OLE 84.09±2.96 81.52±2.18 76.51±2.51 74.80±2.09
DLE 89.21±1.67 87.36±2.26 83.16±2.27 80.75±3.40

Distributed label encoding is commonly used in Multi-Label
Classification (MLC), which has been successfully applied in
computer vision, natural language processing and data mining
[26]. For example, a natural image may have multiple objects,
it is more practical to associate each image with multiple
tags or labels. Thus, developing methods to address MLC
problem becomes increasingly crucial for real-world image
classification tasks, among which [27], [28] are the first few
methods proposing neural networks to solve these problems.

Our experiments have shown that the performance of
models is notably enhanced when labels are converted into
subspaces that are not only semantically meaningful but also
closely related to the specific tasks at hand. This approach
helps the development of a more detailed and precise classifi-
cation system, specifically designed to handle the complexities
in real-world data.

In this section, we introduce a machine learning approach
for intrusion detection, emphasizing both model generaliza-
tion capabilities and fine-grained label classification across
multiple tasks. The experiments demonstrate the effectiveness
of this method in both areas. While the performance of our
distributed label encoding approach surpasses that of one-
hot label encoding, we observe that it still falls short of the
performance achieved by training separate models for each
task. This discrepancy may be attributed to the large capacity
of the shared backbone, thus there is no interference between
tasks. Other factors, such as task interdependencies and the
weighting of the training process for each task, could also
influence the performance of the multi-task learning (MTL)
model, as discussed in [29]. Enhancing the performance of
MTL is important, especially with the aim of expanding it to
include a wide range of tasks within a single model in future
applications. We leave this as future work.
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IV. IMPULSIVE ACOUSTIC EVENT CLASSIFICATION

We propose using DAS and ML techniques to detect gun-
shot events and distinguish gunshot and gunshot-like sounds,
leveraging the high sampling rate provided by DAS. In addi-
tion to starter guns, we add several similar, loud, and impulsive
sounds, including four kinds of firework-induced false alarms:
crackers, cannon, fountain cannon, and high-altitude firework.
We also consider two vehicle-related alarm: vehicle door
slamming and vehicle alarms, along with background noise.
We collected samples from 8 classes over two different days.
Detailed information is summarized in Table III.

TABLE III
DATASET DETAILS

Sensor Class Training Validation Test

FSE

Background 84 21 53
Starter Gun 102 25 59
Door Slam 44 11 28
Car Alarm 108 27 72
Crackers 67 16 16
Cannon 44 11 28

Fountain Cannon 166 41 104
High Altitude Firework 32 8 24

Total 647 167 384

Fiber Coil

Background 84 21 53
Starter Gun 51 12 34
Door Slam 44 11 28
Car Alarm 73 18 48
Crackers 33 8 15
Cannon 22 5 14

Fountain Cannon 83 20 52
High Altitude Firework 16 4 12

Total 406 106 256

Data is collected at a sampling rate of 20 kHz from two
types of sensors, (1) Fiber-based signal enhancer (FSE) with
a mandrel to improve the sensitivity, (2) Fiber Coil, readily
available in the field. The FSEs were made by wrapping the
single-mode fiber (SMF) around thin-walled cylindrical trans-
ducer made of elastic material (glycol-modified polyethylene
terephthalate, PETG, Young’s modulus = 2.1 GPa, Possion’s
ratio = 0.34). The manufacturing process was similar to [30]
with additional protection for outdoor use. The dimensions of
each cylindrical transducer are approximately 50 mm (outer
diameter) x 120 mm (height) x 0.5 mm (thickness). The
total fiber wrapped on each FSE is around 30 meters. When
sound wave arrives the FSE, the acoustic pressure creates
deformation in the cylinder, thereby causing a phase change of
the optical fiber wrapped on it. The radial deformation of the
cylinder corresponds to a longitudinal change of fiber, resulting
in the differential phase measured by DAS. More details on
the theoretical equations and calculations for the FSE can be
found in [30]. The fiber coils were made by wrapping the
SMFs as coils. Each fiber coil has the diameter of around 100
mm. The fiber length of each coil is around 30 meters. The
fiber coils were fixed using zip-ties.

The sensing waveform data is cut into segment of 1-second
length, with each segment containing a single type of sound.
This procedure is automated using a peak-finding algorithm.
Exemplary waveform and its Mel spectrogram for each of the 8
type of events are shown in Figure 6. Note that the two sensors
have different signal-to-noise ratio (SNR) performance.

In total, we gathered 1198 and 768 data samples from
FSEs and fiber coils, respectively. Among them, 384 and 256
were collected from different runs of sound event creation
and held out as test data. The remaining data were divided
into a training set and a validation set in an 80 : 20 ratio.
To evaluate the sampling efficiency of different methods,
a proportion of training set T is used for model training,
ranging from 10%, 20%, ..., to 100%. Across all experi-
ments, the validation set V and test set remain the same
for model selection and evaluation, respectively. Specifically,
hyperparameters are optimized based on empirical loss on
the validation set. λ⋆ = argminλ∈Λ Ex∼p(x) [L(x;Aλ(T ))] ≈
argminλ∈Λ

1
|V|

∑
x∈V [L(x;Aλ(T ))], where λ⋆ represent the

optimal hyperparameter (e.g., the number of epochs) selected
from candidate set Λ, and Aλ(T ) represent the learning
algorithm that maps training data T to a neural network model
fitted under λ. For each setting, 10 Monte Carlo experiments
are performed with different random seeds but using the same
model selection strategy. For model comparison, the average
accuracy on the test set is reported.

A. Baseline methods

We consider five types of data representations that are com-
monly used in audio signal processing and speech recognition,
including

1) DAS waveform signals with high-pass filter at 200 Hz,
2) Short-time Fourier transform (STFT) spectrogram,
3) Mel spectrogram (with amplitude converted to the deci-

bel scale),
4) Mel-frequency cepstral coefficients (MFCCs), and
5) Flatten MFCCs, converting 2D matrix in 1D vector with

time-frequency structure destroyed.
These methods are arranged in order based on incremental

processing procedures, leading to increasing dimension re-
duction. The latter four representations provide hand-crafted
features with certain characteristics that can be considered as
implicit inductive biases. In contrast, the waveform signal rep-
resentation lacks built-in inductive bias (except for the high-
pass filtering), relying instead on automatic feature engineering
by the neural network model. It is of interest to evaluate their
effectiveness in the context of DAS data under different SNR
conditions and training sample sizes.

Alongside each data representation, we considered different
machine learning methods, including

1) Convolutional neural networks (ConvNet), 1D convolu-
tion are used for waveform data,

2) Vision transformer (ViT) [31], and
3) Random forest.
The combination of data representations and machine learn-

ing methods results in seven baseline methods, as summarized
in Table IV. The checkmark (✓) and cross mark (✗) denote
whether a property is satisfied or not. The waveform represents
the original 1D DAS signal in the temporal domain, with only
high-pass filtering applied as a preprocessing step. The wave-
form can be processed into 2D time-frequency representations
such as Short-Time Fourier Transform (STFT), Mel Spec-
trogram, and Mel-Frequency Cepstral Coefficients (MFCCs),
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Fig. 6. Fiber-based signal enhancer (FSE) data recorded by DAS: original waveform of of 1 second (first row) and its Mel spectrogram (second row); Fiber
coil data recorded by DAS: original waveform of of 1 second (third row) and its Mel spectrogram (fourth row). F. Cannon and HAF stand for Fountain
Cannon and High-Altitude Firework, respectively.

TABLE IV
INDUCTIVE BIASES OF DIFFERENT METHODS (SIGNAL REPRESENTATIONS AND ML MODEL CHOICES.)

Method Hand-craft feature Time-frequency structure Human auditory Cepstral analysis Group-equivariance
Waveform (ConvNet) ✗ ✗ ✗ ✗ ✓

STFT (ConvNet) ✓ ✓ ✗ ✗ ✓
STFT (ViT) ✓ ✓ ✗ ✗ ✗

Mel Spectrogram (ConvNet) ✓ ✓ ✓ ✗ ✓
Mel Spectrogram (ViT) ✓ ✓ ✓ ✗ ✗

MFCC (ConvNet) ✓ ✓ ✓ ✓ ✓
MFCC (Random Forest) ✓ ✗ ✓ ✓ ✗

serving as the feature extraction step before machine learning.
The latter two techniques emphasize human auditory system’s
frequency perception. Among the ML models, ConvNet incor-
porates built-in group-equivariance in both time and frequency
axis. For the sake of reproducibility, key design choices for
signal processing procedures and hyperparameters for neural
network training are provided in Table IX in the Appendix.

B. Experimental results

One of the major challenges in impulsive sound detection
systems is false alarms. To address this issue, we propose
the use of high-sampling-rate DAS data and dedicated deep
learning approaches. Following customized signal processing
procedures, we trained classification models to distinguish
multiple impulsive acoustic events based on the chosen data
representation of the vibrations captured by the DAS. Figure
7 and Figure 8 show the mean and standard deviation of the
test accuracy of different methods with different amount of
training data on FSE and fiber coil, respectively.

Short-term power spectrum representation such as STFT,
Mel spectrogram, and MFCC, convert the 1D DAS waveform
into time-frequency representations. ConvNet and ViT models
can utilize the time-frequency information by treating the 2D
spectrogram data as image patches and processing them using
local kernels, with ConvNet assuming additional translation
invariance. Given the high sampling rate, the majority of the

STFT channel information lies in the high-frequency range. In
contrast, Mel spectrogram and MFCC filter banks, inspired by
human auditory ability, emphasize lower-frequency channels
and the envelope of the short-time power spectrum.

Despite limited training data, our model can accurately
recognize various fireworks sounds, including crackers, can-
nons, fountain cannons, and high-altitude fireworks, along
with other safety-related sound events like car alarms, starter
guns, and door slams. The results in Figure 7 and Figure 8
demonstrate the extent to which the inductive biases listed
in Tabel IV are helpful, from the low-data regime to the
high-data regime. Note that in the high SNR setting (FSE),
the Mel spectrogram (ConvNet) approach achieves the best
performance with a significant margin. Conversely, in the low
SNR setting (fiber coil), the waveform (ConvNet) approach
without hand-craft features show a slight advantage in the
low-data regime. The confusion matrix results of these models
are shown in Figure 9 and Figure 10. Using the same Mel
spectrogram representation, the results from (supervised) ViT
consistently show lower performance compared to ConvNets.
This can be explained by the preference for local patterns
in this application and the lack of necessity for long-range
dependencies. Results from the random forest classifiers based
on vectorized MFCC features lead to suboptimal performance,
indicating the importance of the time-frequency structure.

Both collecting fiber sensing data and providing labels for
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Fig. 7. FSE: Test accuracy vs. training sample size

Fig. 8. Fiber coil: Test accuracy vs. training sample size

machine learning training are costly processes. To enhance the
data variability, one can also consider generative model-based
approaches [13], which have demonstrated success on DFOS
data. In the two applications presented in this paper, DFOS
data containing precise event occurrences are used, requiring
manual labeling along both the time and location dimensions.
The annotation effort can be mitigated by adopting attention-
based framework for weakly-supervised learning of DFOS
data [16].

V. SYSTEM IMPLEMENTATION

Considering the unique challenges and requirements of
DFOS over telecom networks [10], we propose customized
AI/ML modules for each distributed fiber sensing application,
with additional considerations for (1) edge AI processing, and
(2) multimodal sensor fusion. The modules are hosted in an
edge AI platform, which can be placed in the central office or
terminal of carriers.

A. Edge processing

The massive volume of distributed acoustic sensing data
presents a significant challenge to the computing hardware, ar-
chitecture, and algorithms used in training and inference [32].
Considering the costs associated with data transmission and

Fig. 9. Confusion matrix on fiber-based signal enhancer (FSE)

Fig. 10. Confusion matrix on fiber coils.

storage, the stringent latency requirements, and the protection
of data privacy, edge AI (or on-premise AI) infrastructures
stands out as a more appropriate choice for fiber sensing appli-
cations than cloud-based infrastructures [33]. In comparison,
cloud computing is not a viable solution to meet these needs,
given the difficulty in transporting the sheer volume of sensing
data and the double-loop delay caused by moving data to the
cloud and waiting for the results to return to the local site.

Through edge processing, ML/AI inference on DFOS data is
provided in real-time, enabling timely actions to be taken. Fig.
11 illustrates our multiple-in-one AI system, which is hosted
on a platform designed to execute pipelined computations
locally. Upon receiving the sensing data, the engine filters out
signals under normal conditions, such as road traffic trajec-
tories, before feeding the data into the Fiber-InD (intrusion
detection) and Fiber-IAD (impulsive acoustic event detection)
modules.

The Fiber-InD module, based on convolutional neural net-
work (ConvNet), is proposed to classify intrusion events,
such as human walking or running. Its outputs include event
type and auxiliary information such as the location, time
stamp, direction along the cable, closeness to the cable, and
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Fig. 11. Flow chart of the AI platform for simultaneous multipurpose sensing.

probability. Additionally, this module can be expanded to
include more intrusion events, such as digging, fence shaking,
and fence cutting. The Fiber-IAD module reports the category
of the detected acoustic events and stores only the processed
data after sufficient reduction for re-training. The processing
pipeline reduces lengthy time series data into intermediate
representations, and a neural network with only a small
number of layers is needed for inference. These computations
can be done efficiently on modern hardware.

B. Multimodal fusion

We developed a comprehensive multimodal impulsive
acoustic detection system incorporating aerial coils, buried
fiber, FSEs, and cameras. This advanced system not only
detects and localizes impulsive event through DAS, capturing
vibration patterns generated by the source but also employs
video analytics to track the origin of the sound. In response
to DAS triggers, the cameras precisely pinpoint individuals
at the sound location, identifying them as potential threat. A
distinct alarming boundary box is supermiposed on the visual
recording, enhancing threat visibility. The system is equipped
with both a regular camera (Camera 1) and a fisheye camera
(Camera 2) strategically positioned at varying angles of expan-
sive coverage. To facilitate person identification and tracking,
a ConvNet-based object detection model meticulously trained.
The model, utilizing ResNet50 as the backbone, incorporates a
cascade Region-based ConvNet detector with a shared region
proposal network across datasets. The subject’s identify and
trajectory are established by associating the location coordi-
nates of the detected sound with those of the identified person’s
boundary box, utilizing an intersection-over-union operation.

As shown in Fig. 12 (a) and (b), the subject was detected
and tracked with a red boundary box in both cameras, while
pedestrians and vehicles are marked in green and blue bound-
ary boxes, respectively. Additionally, the impulsive sound
location was visualized as an augmented heatmap through time
difference of arrival (TDoA) analysis on a GIS. Subsequently
(Fig. 12(b)), the suspect invaded the protected area, which

was in the cameras’ blind zones, as illustrated in Fig. 12(c).
However, the buried optical fiber clearly detected the suspect’s
footsteps and tracked his movement even in blind zones of
the cameras. The system demonstrated the effectiveness of
impulsive sound detection and tracing, particularly in cases
where single-modality detection is insufficient.

This system can be utilized for reconstructing crime scenes
and continuously monitoring various events, including car
alarms triggered by theft, car break-ins, home break-ins, and
prohibited fireworks, to enhance public safety in future smart
and secure city applications.

VI. CONCLUSIONS

Our exploration of fiber optic sensing across telecom net-
works has encompassed a diverse spectrum of infrastructure
protection applications, notably intrusion detection and and
impulsive acoustic event monitoring. Central to our approach
is the integration of fiber sensing with machine learning
techniques, yielding data-driven solutions. The proposed ap-
proaches are designed to be label-efficient by maximally taking
into account the physical knowledge and are adaptable to
changing deployment environments. Powered by an edge AI
platform, our system is able to process multiple applications
simultaneously and locally with low latency, allowing us to
achieve real-time response. Through field tests, our system
has showcased exceptional performance in event detection,
classification, as well as precise localization and identification
of potential threats using advanced video analytics. With
continuous innovation and development, we believe that this
technology has the potential to significantly enhance public
safety and security, for both telecom infrastructure protection
and situation awareness of its surrounding environment.
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APPENDIX A
IMPLEMENTATION DETAILS FOR INTRUSION DETECTION

The implementation details including model architectures
and hyperparameters used during training in Section III is
provided in Table V and VI.
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TABLE V
NEURAL NETWORK ARCHITECTURES

Layer Configuration
Conv2D (1, 32, 3) + ReLU + MaxPool2d (2, 2)

Conv2D (32, 64, 3) + ReLU + MaxPool2d (2, 2)
FC1(4224, 512) + ReLU

DLE: FC-head (512, 2) * 4 heads
OLE: FC-head (512, 12)

TABLE VI
HYPERPARAMETERS FOR MODEL TRAINING

Parameters Choice
Batch size 128
Number of epochs 100
Optimizer Adam
Learning rate 5e-5
Weight decay 1e-5
Dropout rate 0.1
LR scheduler steps [40, 70, 90]
LR decay factor 0.1

TABLE VII
NUMBER OF SAMPLES PER SETTING FOR TABLE I

Snow2wet Wet2snow Walk2run Run2walk
Train set 2200 2075 2100 2175
Test Set 2075 2200 2175 2100

TABLE VIII
NUMBER OF SAMPLES PER SETTING FOR EACH TASK IN TABLE II.

Ratio Set Task 1 Task 2 Task 3 Task 4

75% train 236:240 240:236 82:82 314:326
test 79:80 80:79 28:28 106:109

50% train 157:160 160:157 55:55 210:217
test 158:160 160:158 55:55 210:218

30% train 94:96 96:94 33:33 126:130
test 221:224 224:221 77:77 294:305

20% train 63:64 64:63 22:22 84:87
test 252:256 256:252 88:88 336:348

Task 1, To left: To right; Task 2, near: far; Task 3: go further: go closer;
Task 4: walk: run

APPENDIX B
IMPLEMENTATION DETAILS FOR IMPULSIVE EVENT

CLASSIFICATION

We provide further implementation details of each baseline
methods discussed in Section IV. Table. IX lists a few design
choices about the signal processing pipeline used and model
training hyperparameters. Table. X ∼ Table. XIV detail signal
processing procedures followed by the neural network archi-
tectures. Unless otherwise specified, default parameters from
standard Python libraries are used.

TABLE IX
HYPERPARAMETERS FOR ML AND SIGNAL PROCESSING.

Parameters Choice
Batch size 32
Number of epochs 1024
Optimizer Adam
Learning rate 1e-4
Weight decay 1e-4
Balanced sampling False
Dropout rate 0.1
Butterworth filter type 5th order, digital
Cut-off frequency 200 Hz, high-pass
Mel spectrogram nFFT, hop length 1000, 200
STFT/MFCC nFFT, overlap 512, 307
Number of cepstrum 13

TABLE X
IMPLEMENTATION DETAILS: WAVEFORM (CONVNET)

Preprocessing
High pass filtering

Layer Configuration
Conv1D (1, 8, 256) + BN + ReLU + MaxPool1D (4) + Dropout
Conv1D (8, 16, 128) + BN + ReLU + MaxPool1D (4) + Dropout
Conv1D (16, 32, 64) + BN + ReLU + MaxPool1D (4) + Dropout
Conv1D (32, 64, 32) + BN + ReLU + MaxPool1D (4) + Dropout

Conv1D (64, 128, 16) + BN + ReLU + MaxPool1D (4) + Dropout
Conv1D (128, 256, 8) + BN + ReLU + MaxPool1D (4) + Dropout

FC1 (256, 64) + ReLU + Dropout + FC2 (64, 8)

TABLE XI
IMPLEMENTATION DETAILS: STFT (CONVNET)

Preprocessing
Short-time Fourier transform

Layer Configuration
Conv2D (1, 32, 3) + BN + ReLU + LPPool2d (2, 2)
Conv2D (32, 64, 3) + BN + ReLU + LPPool2d (2, 2)

Conv2D (64, 128, 3) + BN + ReLU + LPPool2d (2, 2)
Conv2D (128, 256, 3) + BN + ReLU + LPPool2d (2, 2)

FC1 (12288, 64) + BN + ReLU + FC2 (64, 8)

TABLE XII
IMPLEMENTATION DETAILS: STFT/MEL SPECTROGRAM (VIT)

Preprocessing
Short-time Fourier transform or Log Mel Spectrogram

Layer Configuration
Image Size: 128 x 128 x 1

Patch Size: 64
Embedding Size: 512

Number of Attention Heads: 32
Number of Transformer Layers: 3

Hidden Size: 64

TABLE XIII
IMPLEMENTATION DETAILS: MEL SPECTROGRAM (CONVNET)

Preprocessing
Log Mel Spectrogram
Layer Configuration

Conv2D (1, 32, 3) + BN + ReLU + LPPool2d (2, 2)
Conv2D (32, 64, 3) + BN + ReLU + LPPool2d (2, 2)

Conv2D (64, 128, 3) + BN + ReLU + LPPool2d (2, 2)
Conv2D (128, 256, 3) + BN + ReLU + LPPool2d (2, 2)

FC1(16384, 64) + BN + ReLU + FC2 (64, 8)

TABLE XIV
IMPLEMENTATION DETAILS: MFCC (CONVNET)

Preprocessing
High pass filtering, MFCC

Layer Configuration
Conv2D (1, 6, 2) + BN + ReLU + LPPool2d (2, 2) + Dropout
Conv2D (6, 8, 2) + BN + ReLU + LPPool2D (2, 2) + Dropout

Conv2D (8, 10, 2) + BN + ReLU + LPPool2D (2, 1) + Dropout
FC1(230, 24) + BN + ReLU + Dropout + FC2 (24, 8)


