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Abstract—We present methods and field trial results demon-
strating an integrated distributed acoustic sensing (DAS) and
distributed temperature sensing (DTS) system for manhole lo-
calization, condition diagnostics, and anomaly detection in pre-
deployed telecommunication fiber networks. The proposed system
leverages ambient environmental signals, such as vibrational
patterns from traffic and day-night temperature fluctuations, and
machine learning techniques for automated detection. By combin-
ing DAS waterfall traces with temperature measurements from
DTS, we achieve improved classification accuracy. Experimental
results from three real-world testbeds in Texas and New Jersey
show a significant improvement in classification accuracy—from
78.9% and 89.5% using DAS and DTS alone, respectively, to
94.7% via cross-referenced analysis. We propose a structured
prediction formulation for manhole localization based on a U-Net
architecture with a gated attention mechanism, where the label of
each fiber location in the waterfall image is predicted using both
its neighboring context and within-patch discriminative features.
The method also supports cross-route generalization for manhole
localization and enables condition diagnostics, identifying issues
such as cable exposure and water ingress. These results highlight
the potential for scalable deployment of fiber sensing solutions
for real-time, continuous monitoring of telecom infrastructure.

Index Terms—Deep learning, distributed acoustic sensing,
distributed temperature sensing, infrastructure monitoring, lo-
calization, machine learning, sensor fusion.

I. INTRODUCTION

ptical fiber cables, originally designed for telecommu-
Onications, are increasingly being repurposed for am-
bient environmental monitoring through fiber sensing tech-
nologies [1]-[4]. When a sensing pulse is launched into the
fiber, light is scattered omnidirectionally at each position due
to Rayleigh, Brillouin, and Raman backscattering. Rayleigh
backscatter, which results from the inhomogeneities in the
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glass and retains the same frequency as the launched signal,
is employed in Distributed Acoustic Sensing (DAS) based on
phase-sensitive optical time domain reflectometry (¢p-OTDR)
for various applications, including traffic monitoring [5] and
incident detection [6], cable damage detection [7], underwater
sound surveillance [8], seismic monitoring [9], and perimeter
intrusion detection [10]. Raman scattering involves nonlinear
processes where the Stokes and anti-Stokes signals return at
frequencies around *13 THz from the launched signal. This
phenomenon is utilized in Distributed Temperature Sensing
(DTS) for applications such as pipeline leakage detection [11]
and fire detection [12].

While DAS and DTS are traditionally used independently,
integrating both sensing modalities provides complementary
information that enhances monitoring reliability. DAS offers
high temporal resolution and sensitivity to acoustic or vibra-
tion events, enabling detection of dynamic activities such as
vehicle movement, or nearby construction. In contrast, DTS
provides accurate, long-term temperature profiling along the
same fiber, allowing detection of environmental changes such
as flooding or abnormal heating. By combining these two
sensing mechanisms, the system can correlate dynamic and
static signals to improve event interpretation and reduce false
alarms. Similar DAS/DTS integrations have shown proven
benefits in other fields, such as oil and gas well monitoring
[13], power cable diagnostics [14], and pipeline integrity man-
agement [15], where joint acoustic—thermal analysis enables
more robust fault detection and localization. Motivated by
these advantages, this work explores the joint use of DAS
and DTS for reliable localization and condition monitoring of
underground fiber cables deployed in manholes.

Recent advances in machine learning (ML) and artificial
intelligence (AI) technologies have created exciting opportu-
nities to bridge the gap between distributed fiber-optic sensing
and real-world applications in noisy and complex deployment
environments. Readers are referred to recent surveys [16],
[17] for comprehensive overviews of this emerging research
area. There is a growing body of research exploring cutting-
edge ML techniques to enhance the performance of fiber-
optic sensors. Examples include weakly supervised learning
for signal denoising [18], conditional diffusion models for
data imputation [19], and recurrent autoencoders for seis-
mic data compression [20]. In addition, convolutional neural
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networks (ConvNets) have been proposed for marine animal
sound classification [21]. Recent studies have also investigated
the impact of data representation (e.g., short-time Fourier
transform (STFT) spectrograms versus mel-frequency cepstral
coefficients (MFCCs)) and model architecture (e.g., ConvNets
versus vision transformers) on acoustic event recognition in
telecom networks [10], as well as approaches to improve data
efficiency through few-shot adaptation from pre-trained foun-
dation models [22] and semi-supervised learning via energy-
based generative models [23].

In modern telecom infrastructure—forming the backbone
of 5G and future networks—a large proportion of fiber-
optic cables is buried underground, with slack fiber segments
typically stored in manholes (or handholes) along the route. It
is essential for carriers and operators to accurately locate these
manholes for maintenance purposes [24]. However, due to
ongoing changes in fiber cables, such as branching, additional
connections, and the incorporation of extra fibers, relying
solely on the database and optical time-domain reflectometry
(OTDR) may result in inaccurate manhole localization. OTDR
lacks precision in pinpointing the actual geographic location.
This limitation arises because the measured optical distance
does not account for slack loops or routing variations along
the fiber path, making it difficult for field technicians to locate
the fault accurately on the ground.

To localize landmarks or key points along fiber routes, meth-
ods based on fiber sensing and machine learning techonologies
have been proposed for automated localization by utilizing
external vibrations, such as hammer strikes on manhole lids
[25] and hammer knocks on utility poles [26]. However,
these active excitation approaches require on-site visits and
the deliberate generation of excitation signals, making them
labor-intensive, time-consuming, and impractical for large-
scale deployment.

To overcome this limitation, passive ambient vibration
methods have been explored with automated manhole local-
ization algorithms over existing telecom networks. In [27],
an image patch classification—based approach is proposed that
leverages ambient environmental data—such as traffic-induced
vibrations—for manhole localization, thereby eliminating the
need for manual excitation. Although environmental excita-
tions can generate discriminative features, not all waterfall
patches from manhole locations consistently exhibit them. As
a result, the problem is considered weakly supervised since
labels (manhole vs. non-manhole) are available only at the
location level, not for every time period. Accordingly, a top-K
data selection scheme [27] is proposed to enhance the witness
rate (WR), which is the proportion of informative, manhole-
indicative patterns within a manhole location.

In this paper, which is an extension to [28], we propose
the design of an integrated DAS/DTS sensing system for
localizing underground cable access points (manholes, hand
holes, etc.), diagnosing their conditions, and detecting cable
exposure anomalies, with field validation. We also introduce
a structured prediction formulation for manhole localization
based on a U-Net architecture [29] with attention gates
[30] applied to spatial-temporal waterfall data. Our approach
leverages a lightweight U-Net Attention model to perform

dense spatial predictions along the fiber, thereby enabling
high-accuracy localization. The proposed structured prediction
formulation and U-Net Attention model are broadly applicable
to a wide range of linear infrastructure monitoring applica-
tions, including railways, tunnels, pipelines, riverbanks, power
transmission lines, and telecommunication cables.

The remainder of this paper is organized as follows. Section
IT presents the field trial setup and the integrated DAS/DTS
system configuration. Section III describes the physical phe-
nomena related to manhole localization and condition diag-
nosis. Section IV presents the proposed method. Section V
provides experimental results from the field trials, including
manhole localization based on cross-referencing DAS and
DTS, condition diagnostics, and anomaly detection. Finally,
Section VI concludes the paper.

II. FIELD TRIAL EXPERIMENTAL SETUP

Figure 1(a) displays the experimental setup of integrated
real-time DAS/DTS system. A 1550-nm laser diode (LD)was
split by a 50 : 50 coupler, where one branch is used as the
local oscillator (LO) for the coherent receiver, and another
branch passes through an acousto-optic modulator (AOM),
erbium-doped fiber amplifier (EDFA) and dense wavelength
division multiplexing (DWDM) filter, generates 40-ns sensing
pulses, corresponding to a theoretical spatial resolution of
approximately 4 meters along the sensing fiber. The system
operates at a 2000 Hz repetition rate and a 125 MHz sam-
pling rate, and through digital signal processing, interpolation,
downsampling, and fast on-chip processing to achieve a spatial
sampling interval as fine as 1.6 meter within the sensing
coverage of 10 dB loss (approximately 50 km of standard
single-mode fiber (SSMF) with 0.2 dB/km attenuation). Both
Rayleigh and Raman backscattering signals are returned from
the field and separated by DTS Raman filters. Further details
of DAS/DTS system design can be found in [31].

The Rayleigh backscatters at 1550 nm are captured by an
integrated coherent receiver (ICR), processed through digital
signal processing (DSP) for the DAS function, while high-
gain avalanche photodiodes (APDs) receive Raman backscat-
ters at 1450 nm and 1660 nm, feeding into DSP for DTS
functionality. By adjusting the peak power of the sensing
probe, the system can selectively activate DAS at low peak
power (< 100 mW) and DTS at high peak power (> 1
W). The DTS system provides a temperature resolution of
approximately +1°C within the first 5 km and +2°C at end
of 20 km, which is sufficient to resolve the environmental
temperature fluctuations observed in this study. These environ-
mental fluctuations typically range from several to more than
ten degrees Celsius between day and night, confirming that the
measured variations represent genuine thermal changes rather
than measurement noise.

During field experiments, the two sensing modes were not
operated concurrently. Instead, the system alternated between
modes, approximately 1 minute for DTS measurements and
5 minutes for DAS measurements, allowing both acoustic
and thermal responses to be characterized on the same fiber
without hardware reconfiguration.
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Fig. 1. (a) Experimental Setup (LO: local oscillator.). Testbeds in (b) Richardson, TX, (c) Long Beach Island and (d) Philipsburg, NJ.

Figure 1(b) and Figure 1(c) show the test beds in Richard-
son, TX, and Long Beach Island (LBI), NJ. The fiber length
in Richardson test bed is approximately 5.8 km, while the
LBI test bed covers about 5.2 km. Most cables are buried
at depths of 36-48 inches (0.9—1.2 m) in TX and 40-60
inches (1—1.5 m) in NJ. These locations represent two dif-
ferent environmental conditions: the manhole in Richardson
is typically dry, whereas those in LBI are often flooded. In
this study, we employed two approaches: one that analyzes the
temperature variations (AT) from DTS data, and a machine
learning (ML)-based approach that processes DAS signals
based on characteristic vibration patterns generated by passing
traffic.

To capture temperature variations, data was analyzed during
the warmest part of the day (~2 pm) and the coolest part of
the night (~2 am). These windows represent peak thermal
fluctuations, providing essential data for analysis. In this con-
text, dry manhole and aerial cable sections with fiber lengths
will be identified, while buried cables remain unaffected due
to the stable underground temperature, showing no significant
temperature variations.

IITI. PHYSICAL PHENOMENA

In this section, we review the physical principles underly-
ing the target events and conditions relevant to DAS-based
manhole localization and DTS-based condition monitoring.

A. Manhole-Related Vibration Patterns from DAS Data

DAS captures vibrations along the fiber cable at 120-
millisecond intervals, producing a two-dimensional array re-
ferred to as a ’waterfall” In this 2D array, the columns
correspond to spatial locations along the fiber, and the rows
represent time. A colormap is used to visualize the intensity of
local vibrations within this time-location plane. As such, the
2D array can be interpreted as an image. Figure 2 displays
several example waterfall plots, with ground truth manhole
locations indicated by the horizontal bar at the top.

Discriminative features useful for manhole localization pri-
marily arise from vehicle interactions with the road surface
and manholes, or from vibration sources inside the manhole
itself. The associated vibration patterns can be categorized as
follows:

o Slack cable coils stored in manholes or handholes are
excited simultaneously when a vehicle passes by. This

results in a horizontal stripe whose width corresponds
to the coil length, creating two disconnected diagonal
trajectories (e.g., tilted ellipse regions in Figure 2 (b)—(f)).

+ Weaker signal response compared to neighboring cable
sections, due to reduced mechanical coupling at the
manhole (e.g., rounded-rectangle regions in Figure 2 (b),
(@)).

« Strong impact signatures occur when a vehicle drives
over a manhole lid, producing a significantly larger local
vibration than normal driving. This interaction excites a
broader section of the fiber, producing a horizontal stripe
superimposed on the diagonal trajectory. (e.g., arrow-
pointed regions in Figure 2 (b), (d)).

« Vertical stripes are caused by static or periodic vibration
sources within the manhole (e.g., water pumps), which
may be continuous or intermittent (e.g., rectangle regions
in Figure 2 (a), (f)). Note that the vertical stripes high-
lighted by the hexagonal regions in Figure 2(d) are not
associated with a manhole; rather, they originate from
cable connections inside a large central office, where
electrical appliances such as servers, power supplies, and
cooling systems generate persistent vibrations.

Location

Fig. 2. Exemplary waterfall plot near manhole locations. (48-second waterfall
over 418 meters; pixel color indicates vibration intensity along the cable, with
warmer colors representing stronger signals (intensity reference shown by the
color bar). Top bar plots: manhole locations (yellow), non-manhole locations
(blue).

These phenomena enable both human analysts and machine
learning models to identify manholes and slack cable loca-
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tions using ambient sensing data. However, due to variability
in vehicle types, driving speeds, traffic density, fiber coil
lengths, and sensing distances, the resulting vibration signa-
tures vary significantly, making rule-based detection difficult.
Deep learning models [32] are well-suited for this task because
they can automatically learn hierarchical and discriminative
representations directly from waterfall images. By learning
subtle spatiotemporal patterns and contextual cues, deep neural
networks can distinguish manhole-related signals from back-
ground noise.

B. Temperature Variations from DTS Data

For manhole condition monitoring, the measured tempera-
ture variation (A7) played a key role. As shown in Figure 3,
three different manhole (MH) and handhole (HH) conditions
(dry, flooded, and iced) are illustrated in Figure 3 (a)-(c).
For a dry manhole or handhole, the internal temperature
during summer daytime is higher than that of the buried
cable outside, while at night, it drops due to air circulation.
Meanwhile, the temperature of the buried cables outside the
manhole or handhole remains relatively stable, reflecting the
consistent underground conditions. As a result, dry manholes
or handholes exhibit a noticeable AT between the inside and
outside across day and night cycles. In contrast, flooded and
iced manholes or handholes show minimal AT, as the water
or ice maintains a stable internal temperature throughout the
day.
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=5
(a) )

~——Measure in daytime — Day/night temp. variation
—=Measure in nighttime
_l l— : _l_l_
0

[ |

o

Temperature

Buried cable

Distance

Distance

Flooded MH/HH

(b) ‘

Iced MH/HH

(c) ;K

mperature

Buried cable

Distance

mperature

Buried cable

Buried
cable

Buried Buried
cable cable

Buried

cable MH/HH

MH/HH

Fig. 3. Temperature variations (AT’) in different manhole conditions

IV. METHOD

We explore deep learning approaches for manhole localiza-
tion using ambient noise captured from DAS. With location-
level labels (manhole vs. non-manhole) efficiently obtained
from field survey, a machine learning model trained on DAS
data from one route can be applied to localize manholes on a
new route. The predictions can be cross-referenced with DTS
results to further improve localization accuracy and identify
flooded manholes.

A. Witness Rate Enhancement

The DAS ambient data is considered weakly labeled, as it
lacks precise timestamps for events containing discriminative
information. A key challenge lies in the variability of the
witness rate (WR)—the frequency at which useful vibration
patterns appear—across both time and location. For example,
manholes are more difficult to detect during times and at
locations where traffic-induced vibrations are minimal. To
address this issue, we adopt a top-K data selection scheme
[27], where, for each location, the K patches with the highest
total vibration levels per day are selected. In our experiments,
we set K = 50.

When the WR is high, most waterfall patches from a
manhole location exhibit discriminative features—such as
broken traffic trace—while only a few patches may be lack
of such evidence. As a result, the problem reduces to a
supervised learning task with one-sided label noise [33], that
is, all negative samples (non-manhole) are truly negative. This
setting can be addressed using standard supervised learning
frameworks [34].

B. Structured Prediction Formulation

While manhole localization is treated as an image classifica-
tion problem in [27], we propose a new structured prediction-
based formulation [35] in which the labels of each column in
the waterfall image are predicted as a sequence. This choice
has several advantages.

1) It effectively leverages contextual information, as the
label prediction is informed by neighboring locations
and spatiotemporal patterns within a large window.

2) It avoids the issue of selecting an inappropriate window
length, which could result in either a partial manhole
or multiple manholes within the same window. This
method provides fine-grained, precise label supervision
at each sensing location.

To bridge the gap between different routes, we implement
adaptive normalization in image preprocessing: clipping each
waterfall patch at the 0.95 quantile and quantizing it into 256
levels. The waterfall image patches are resized to 256 x 256.

C. Model Architecture

Assuming the input image patch has a size of H x W,
and the output is a binary label vector of width W. When
fitting a neural network model with an input of size H x W
and output of size W, it is important to preserve the location
(column-wise) correspondence between input and output. This
inductive bias can be distilled by first auto-encoding with an
intermediate representation X of size H x W x C, followed by
reducing the H and C' dimensions separately using an attention
layer and a classifier. The architecture of the proposed UNET-
Attention model is summarized in Table I, with the double
convolution block detailed in Table II.

1) U-Net: We use a lightweight U-Net model [29] to exploit
spatial-temporal dependencies in the waterfall patches, based
on an encoder-decoder architecture with skip connections. The
UNET-Attention architecture is detailed in Table I, with bilin-
ear upsampling in the decoder for computational efficiency and
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Fig. 4. Illustration of the proposed UNET-Attention model architecture for manhole localization formulated as a structured prediction problem. The network
follows an encoder—decoder architecture with skip connections. The color-coded blocks correspond to the convolutional, pooling, unpooling, concatenation,
and attention layers described in Table I. The numbers below each 3D block indicate the size of the intermediate feature maps, and arrows denote skip
connections that link encoder and decoder stages [29]. The attention module enhances feature selectivity before the final sigmoid classifier, which produces

dense predictions along the sensing distance dimension.

smoother feature reconstruction. The model comprises 4 down
sampling blocks with increasing channels from 16 to 256,
followed by 4 up sampling blocks that restore the resolution.
Each downsampling block reduces the spatial and temporal
resolution of waterfall images by a factor of two using stride-
2 convolution, resulting in an overall downsampling factor of
16x after four stages. This hierarchical reduction allows the
network to enlarge its receptive field, enabling it to integrate
contextual information across both time and sensing-distance
dimensions, which is crucial for distinguishing manhole-
related patterns from background variations. At the same
time, limiting the depth to four levels preserves sufficient
spatial detail for accurate localization while keeping the model
compact. The U-Net architecture has been applied to DAS
to enhance spatiotemporal resolution [36] and to detect weak
vehicle-induced quasi-static strain signals [37] for intelligent
transportation applications.

2) Gated Attention Mechanism: We propose a time-domain
attention layer to select discriminative features within the
image patch along the time dimension, based on attention-
based deep multiple instance learning (MIL) [27], [30]. Let

Xw = {X1w,..-,Xgw} be a bag of H embeddings at
location w, then the adaptive MIL pooling can be written as
H
Zy = Z ap wXhw, Zw € RC7 (1)
h=1

with a simple self-attention layer imposing soft attention
pooling along the time axis H,

TABLE I

UNET-ATTENTION ARCHITECTURE OVERVIEW
Stage Operation
Input Input image with Nchannels
Initial Conv DoubleConv(Nchannelss 16)
Down 1 MaxPool (x2) — DoubleConv(16, 32)
Down 2 MaxPool (x2) — DoubleConv(32, 64)
Down 3 MaxPool (X2) — DoubleConv(64, 128)
Down 4 MaxPool (x2) — DoubleConv(128, 128)
Up 1 Upsample (x2) — concat — DoubleConv(256, 64)
Up 2 Upsample (x2) — concat — DoubleConv(128, 32)
Up3 Upsample (x2) — concat — DoubleConv(64, 16)
Up 4 Upsample (x2) — concat — DoubleConv(32, 16)
Attention Conv1D(16,16) — Tanh — Conv1D(16,1) — Softmax
Weighted Sum | BatchedMatrixMultiplication(attn, features | )
Output Conv 1 x 1 Conv — Sigmoid (output n asses Channels)

exp (wg tanh (W1 - x5, + b1) + b2)
Uhw = — (@

> exp (W;r tanh (W1 - xp/ 0 + b1) + b2)
h'=1

where the parameters {W1, wy, by, bo} are dynamically pre-
dicted by a learnable network.

3) Classification:: After an out convolution layer, the final
output uses a sigmoid activation to produce a W x 1 probabilis-
tic segmentation vector (ngpsses = 1 for binary segmentation,
Binary Cross Entropy (BCE) loss). Location-level predictions
are derived by aggregating per-column predictions across mul-
tiple rows of pulse train (~120ms) and time frames (~48s).
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TABLE 11
STRUCTURE OF THE DouBLECONV BLOCK
Layer | Operation
1 Conv2D (in, mid) — BatchNorm2D — ReLU (in-place)

2 Conv2D (mid, out) — BatchNorm2D — ReLU (in-place)
Conv2D uses kernel size = 3, padding = I, and no bias.

The proposed UNET-Attention model architecture for
structured prediction (i.e., mapping a 2D image to a 1D label
sequence) is illustrated in Figure 4, with the visualization
generated using the PlotNeuralNet tool [38]. The encoder
progressively downsamples the input waterfall image to ex-
tract multi-scale spatio—temporal features, while the decoder
restores spatial resolution through bilinear upsampling and
skip connections. Feature map sizes and channel dimensions
are annotated below each block for clarity. The final atten-
tion block emphasizes discriminative spatial-temporal regions
before classification. The number of encoder—decoder layers
was empirically chosen to capture multi-scale spatio—temporal
features.

V. EXPERIMENTAL RESULTS

Our method has been validated on three Verizon field
testbeds in TX and NJ, demonstrating its ability to accurately
localize manholes, assess conditions, and support anomaly
monitoring for cable damage prevention. All experiments were
conducted on a workstation running Ubuntu 22.04.5 LTS,
equipped with an Intel Core i7-9800X CPU (8 cores, 16
threads, 3.8 GHz), 125 GB RAM, and one NVIDIA GeForce
RTX 2080 Ti GPU (11 GB VRAM). Training for 100 epochs

with a batch size of 50 takes approximately 9 hours of wall-
clock time on 20,800 waterfall images (256 x 256).

A. Cross-Route Generalization

Our method demonstrates strong zero-shot cross-route gen-
eralization performance, achieving an area under the receiver
operating characteristic (ROC) curve (AUC) score of 0.8463
(Richardson to LBI) and 0.8631 (LBI to Richardson) based
on data collected over multiple days. With the time-domain
attention layer, the AUC scores increase to 0.8766 (Richardson
to LBI) and 0.8857 (LBI to Richardson). The experimental
results for manhole localization predictions are presented in
Figure 5, including DAS waterfall traces in (a) and (d),
predictions from DTS in (b) and (e), and DAS in (c) and (f),
with the actual manhole locations marked by pink lines. The
test route in Richardson spans 5.8 km, with 1 km of aerial
cable around 3.2 km. By setting thresholds of AT = 2°C' and
0.45 of DAS prediction, 17 and 15 manholes were identified
out of a total of 19, resulting in detection rates of 89.5% and
79%, respectively. On the Richardson route, cross-referencing
DAS and DTS data improves the detection rate to 94.7%.
Figure 5(i) — (iii) presents photos of manholes along the route.
For the first manhole (Figure 5(i)), DTS failed to detect it
as the monitoring cable was fully submerged, leading to no
AT due to the stable water temperature. Both DAS and DTS
missed another manhole (Figure 5(ii)) following the aerial
cable section, attributed to short slack fibers and partial water
presence inside the manhole, which reduced AT and resulted
in low prediction probabilities from DAS.

Figure 5(iii) displays a typical dry handhole in Richardson.
Using the same trained ML engines from Richardson, TX to
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test the LBI, NJ route produced the result shown in Figure 5(f).
This route spans 5.2 km, with an aerial cable covering the first
2 km. The DAS prediction rate was 85.7% with a threshold
of 0.45. However, Figure 5(e) shows that no manholes could
be detected via DTS in LBI due to the consistently flooded
conditions, as evidenced in Figure 5 (iv) and (v). Figure 5(vi)
shows a connected manhole with longer slack fibers, resulting
in higher DAS prediction possibilities. Some manholes exhibit
lower DAS prediction possibilities because they are located
farther from traffic, leading to limited vibration detection.
However, since ambient DAS data are abundant, incorporating
additional datasets could further enhance performance. In
addition, frequency-domain analysis—such as applying a fast
Fourier transform (FFT) to the recorded acoustic signals—is a
promising direction that could reveal additional discriminative
features for identifying manhole-related events. For instance,
confined spaces filled with water exhibit a filtering effect in the
frequency domain, which has been evidenced experimentally
utilizing DAS in [21].

B. Condition Diagnostics and Anomaly Detection

The proposed architecture is not only valuable for manhole
localization but also for condition diagnostics and anomaly
detection to help prevent cable damage. Figure 6(a) illustrates
an enlarged DTS result of a manhole where the cable is both
submerged in water and exposed to air. The corresponding
field inspection is shown in Figure 6(b). By continuously
monitoring these conditions, the system can provide real-time
feedback to field technicians, ensuring they are equipped with
the appropriate tools for maintenance, improving operational
efficiency and response times.

Using the proposed scheme, we successfully identified
manhole conditions under both dry and flooded scenarios.
Based on the same principle, we believe that frozen manholes
could also be detected, as temperature variations would simi-
larly influence the sensing signals. However, our current field
testbeds, located in Richardson, Texas, and Long Beach Island,
New Jersey, did not experience freezing conditions during the
testing period; therefore, we do not yet have experimental data
for such cases.

Figure 6(c) and Figure 6(d) present DAS waterfall traces
and DTS temperature variations for identifying cable anoma-
lies over Philipsburg testbed (Figure 1(d)), where the fiber
length is approximately 18 km. Between the 12-12.8 km
section of the route (highlighted in orange), DTS detected
a AT = 10°C, typically indicating aerial cable sections.
However, DAS detected traffic patterns and behaviors that are
more typical of buried cables. Cross-referencing these results
suggested that the cable might have fallen from its poles or was
otherwise exposed. A field inspection (Figure 6(e)) confirmed
the cable had indeed fallen to the ground due to construction
activities and was left unprotected. Early identification of such
anomalies can help prevent potential cable damage.

VI. CONCLUSIONS

We demonstrated the effectiveness of an integrated
DAS/DTS system for manhole localization, condition diagnos-
tics, and cable status anomaly detection. By cross-referencing

data from DAS and DTS, this approach significantly enhances
accuracy from 79% to 94.7%, outperforming standalone sys-
tems. Field trials in Richardson, TX and Long Beach Island
(LBI), NJ confirmed its adaptability to diverse environmental
conditions, such as dry, and flooded manholes. Furthermore,
the system’s ability to provide real-time feedback to tech-
nicians ensures proactive maintenance, reducing the risk of
cable damage. These results confirm that this integrated fiber
sensing system is a promising solution for enhancing the
operational reliability of telecom networks, particularly for 5G
infrastructure and beyond.
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